Fast Aeroelastic Assessment Methods for Industrial Aircraft Design

P. Chambers, M. Franciolini, Dr A. Da Ronch

Aerodynamics and Flight Mechanics Group, University of Southampton

iPhD Project

About

- University of Southampton, south coast UK
- Next Generation Computational Modelling (NGCM) iPhD
 - ► Taught 1st year, scientific computation methods
 - 3 years of research
- Funded by Engineering and Physical Sciences Research Council

- Overview
 - Aims
 - Methods
- Results
 - Progress
 - Validation/Results
- Summary

- Overview
 - Aims
 - Methods
- Results
 - Progress
 - Validation/Results
- Summary

Aims

- Collaboration with Airbus UK
- Improved fidelity rapid method for aeroelastic loads assessment
- Bridge gap between CFD and linear methods
- Early in the design process
- Produce results overnight

Motivation

 Aeroelasticity (Gust response, Flutter..) is a threat for flexible aircraft.

NASA Helios Mishap ¹. Left: Pitching oscillations and dihedral angles beyond design limit (aeroelastic response).

Right: Structural disintegration resulting from critical loads

Noll, T. et al, "Investigation of the Helios Prototype Aircraft Mishap: Volume I Mishap Report," http://www.nasa.gov. Jan 2004

Applications

- Aircraft design, optimisation
- Flow control research
- Study of aeroelastic phenomena
- Agile vehicle research

Figure 1: Aeroelastic modelling of a fighter aircraft ²

- Overview
 - Aims
- Methods
- Results
 - Progress
 - Validation/Results
- Summary

Aerodynamic Methods

- Unsteady Vortex Lattice Method (UVLM) 3D inviscid
- Reynolds Averaged Navier Stokes (RANS), Infinite Swept Wing -'2.5D+' viscous
- ullet Iterative 'lpha correction' method for viscous/inviscid coupling
- Implemented in solver code 'Tau' (C Programming language)

Alternative: Doublet Lattice Method

- Frequency Domain Approach
- Available in most aeroelasticity packages (e.g. NASTRAN)
- Fast linear Method
- Insufficient for non-linear flows

Late stages of vortex with breakdown occurring over the top surface of SACCON ³

³ Vallespin, D., Da Ronch, A., Boelens, O.and Badcock, K. J. (2011) Vortical flow prediction validation for an unmanned combat air vehicle model. Journal of Aircraft, 48, (6), 1948-1959.

Unsteady Vortex Lattice Method ⁴

- Time marching method, allows non-linearity
 - Induced velocity at collocation points (Biot Savart law)
 - No-penetration surface → Zero normal velocity
 - $A \cdot \vec{\Gamma} = R \vec{H} S(\vec{V_{\infty}}, \alpha, \vec{n}..)$.. Solve $\vec{\Gamma}$.

Southampton

⁴Katz and Plotkin, Low Speed Aerodynamics. (2002)

Viscous Inviscid Coupling (steady state)

- Infinite Swept Wing 5:
 - Spanwise decoupled RANS
 - Sectional viscous data lookup table C_L vs α
- Coupling: α correction⁶ 7:
 - ▶ VLM \rightarrow inviscid lift coefficient $C_{L_{inv}}$, effective angle of attack α_{eff}
 - $ightharpoonup lpha_{\it eff}
 ightarrow {\it C}_{\it L_{\it visc}}$
 - $\qquad \qquad \Delta \alpha = (\textit{\textbf{C}}_{\textit{\textbf{L}}_\textit{\textit{visc}}} \textit{\textbf{C}}_{\textit{\textbf{L}}_\textit{\textit{inv}}}) / \textit{\textbf{C}}_{\textit{\textbf{L}}_{\alpha,\textit{\textit{visc}}}}$
 - ▶ Correct α_{eff} , iterate to convergence in $|C_{L_{visc}} C_{L_{inv}}|$

12 / 22

⁵Ghasemi et al. "A Two-Dimensional Infinite Swept Wing Navier-Stokes Solver," 52nd Aerospace Sciences Meeting, AIAA SciTech, Jan. 2014.

⁶Van Dam, C. P., "The aerodynamic design of multi-element high-lift systems for transport airplanes" Progress in Aerospace Sciences, Vol. 38, No. 2, 2002, pp. 101 144.

⁷ Gallay, S. et al, "Sweep effects on non-linear Lifting Line Theory near Stall" 52nd Aerospace Sciences Meeting, AIAA SciTech, Jan. 2014.

- Overview
 - Aims
 - Methods
- Results
 - Progress
 - Validation/Results
- Summary

Progress

Steady VLM code implemented in C

Some code validation

Version control and testing

Spanwise decoupled (ISW) RANS algorithm generated in Tau

Code structure

- Lifting surface object orientation, with attributed wake
- Multiple surface 'objects' support
- HDF5 file format read/write
 - CGNS based on HDF5
 - Supports large data sets with objects and attributes
 - File compression
- Fast LAPACK libraries for solving linear systems

- Overview
 - Aims
 - Methods
- Results
 - Progress
 - Validation/Results
- Summary

VLM Validation

Compare with finite wing theory -

$$C_{L_{lpha}_ ext{wing}} = rac{C_{l_{lpha}}}{1 + rac{C_{l_{lpha}}}{\pi eAR}}$$

Results

Pressure distribution Left: VLM result

Right: DLM result, low reduced frequency (k = 0.1)⁸

18/22

⁸ Da Ronch A., Cavagna, L."A Doublet-Lattice Method for Calculating Lift Distributions on Planar and Non-Planar Configurations in Subsonic Flows", May 2007.

Progress

 Speedup factor of around 4 with 2.5D+ method compared with Tau standard method

Left: Convergence history speedup demonstration Right: Pressure coefficient comparison

To Be Implemented...

• Extension of α correction method and VLM to unsteady flight mechanics

Fast multipole algorithm (wake)

 Eigenvalue modal decomposition for structural response (NASTRAN)

Test case using non-confidential data, DLR-F6 wing-body

Summary

Improved fidelity fast aeroelastic method

• Target vulnerable aircraft early in design

Aerodynamic model: 3D UVLM coupled with 2D RANS

Structural model: Modal approach

Thank you.

